Indoleamine 2,3-Dioxygenase Is Not a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation through Adipose-Derived Stem Cells
نویسندگان
چکیده
BACKGROUND Although indoleamine 2,3-dioxygenase (IDO)-mediated immune suppression of mesenchymal stem cells (MSCs) has been revealed in septic and tumor microenvironments, the role of IDO in suppressing allergic airway inflammation by MSCs is not well documented. We evaluated the effects of adipose-derived stem cells (ASCs) on allergic inflammation in IDO-knockout (KO) asthmatic mice or asthmatic mice treated with ASCs derived from IDO-KO mice. METHODS AND FINDINGS ASCs were injected intravenously in wild-type (WT) and IDO-KO asthmatic mice. Furthermore, asthmatic mice were injected with ASCs derived from IDO-KO mice. We investigated the immunomodulatory effects of ASCs between WT and IDO-KO mice or IDO-KO ASCs in asthmatic mice. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in bronchoalveolar lavage fluid (BALF), eosinophilic inflammation, goblet hyperplasia, and serum concentrations of total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL)-4, IL-5, and IL-13, and enhanced Th1 cytokine (interferon-γ) and regulatory cytokines (IL-10, TGF-β) in BALF and lung draining lymph nodes (LLNs). ASCs led to significant increases in regulatory T-cells (Tregs) and IL-10+ T cell populations in LLNs. However, the immunosuppressive effects of ASCs did not significantly differ between WT and IDO-KO mice. Moreover, ASCs derived from IDO-KO mice showed immunosuppressive effects in allergic airway inflammation. CONCLUSIONS IDO did not play a pivotal role in the suppression of allergic airway inflammation through ASCs, suggesting that it is not the major regulator responsible for suppressing allergic airway inflammation.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملIndoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation.
Indoleamine 2,3 dioxygenase (IDO) has emerged as an important mediator of immune tolerance via inhibition of Th1 responses. However, the role of IDO in antigen-induced tolerance or allergic inflammation in the airways that is regulated by Th2 responses has not been elucidated. By using IDO(-/-) mice, we found no impairment of airway tolerance, but, surprisingly, absence of IDO provided signific...
متن کاملAdipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma
Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Treg...
متن کاملIndoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality.
Graft-versus-host disease (GVHD) is initiated after activation of donor T cells by host antigen-presenting cells (APCs). The immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) is expressed by APCs and parenchymal cells and is further inducible by inflammation. We investigated whether lethal conditioning and GVHD induce IDO and if IDO prevents tissue injury by suppressing immune response...
متن کاملImmature dendritic cells expressing indoleamine 2,3-dioxygenase suppress ovalbumin-induced allergic airway inflammation in mice.
BACKGROUND Proliferation of activated CD4+ T lymphocytes is inhibited by indoleamine 2,3-dioxygenase (IDO). OBJECTIVE We undertook the present study to test the hypothesis that IDO-expressing immature DCs (imDCs) can restore immune tolerance in mice suffering from allergic airway inflammation. METHODS imDCs were generated from murine bone marrow cells using granulocyte-macrophage colony-sti...
متن کامل